Pharmaceuticals & Biotechnology
Few-shot Algorithms for Consistent Neural Decoding (FALCON) Benchmark Brianna M. Karpowicz 1,2 Joel Ye3 Chaofei Fan 4 Pablo Tostado-Marcos
Intracortical brain-computer interfaces (iBCIs) can restore movement and communication abilities to individuals with paralysis by decoding their intended behavior from neural activity recorded with an implanted device. While this activity yields high-performance decoding over short timescales, neural data are often nonstationary, which can lead to decoder failure if not accounted for. To maintain performance, users must frequently recalibrate decoders, which requires the arduous collection of new neural and behavioral data. Aiming to reduce this burden, several approaches have been developed that either limit recalibration data requirements (few-shot approaches) or eliminate explicit recalibration entirely (zero-shot approaches). However, progress is limited by a lack of standardized datasets and comparison metrics, causing methods to be compared in an ad hoc manner. Here we introduce the FALCON benchmark suite (Few-shot Algorithms for COnsistent Neural decoding) to standardize evaluation of iBCI robustness. FALCON curates five datasets of neural and behavioral data that span movement and communication tasks to focus on behaviors of interest to modern-day iBCIs. Each dataset includes calibration data, optional few-shot recalibration data, and private evaluation data. We implement a flexible evaluation platform which only requires user-submitted code to return behavioral predictions on unseen data.
NanoBaseLib: A Multi-Task Benchmark Dataset for Nanopore Sequencing Supplementary Material Lu Cheng Department of Computer Science, Aalto University, Finland
Recommended documentation frameworks include datasheets for datasets, dataset nutrition labels, data statements for NLP, and accountability frameworks. The benchmarks and processed datasets are available at https://doi.org/10.5281/zenodo.10889896. The choice of hosting platform is yours, as long as you ensure access to the data (possibly through a curated interface) and will provide the necessary maintenance. The website is hosted on GitHub, where it will be maintained and regularly updated. This can be hidden upon submission if the dataset is not yet publicly available but must be added in the camera-ready version. In select cases, e.g when the data can only be released at a later date, this can be added afterward.
On Divergence Measures for Training GFlowNets
Generative Flow Networks (GFlowNets) are amortized samplers of unnormalized distributions over compositional objects with applications to causal discovery, NLP, and drug design. Recently, it was shown that GFlowNets can be framed as a hierarchical variational inference (HVI) method for discrete distributions. Despite this equivalence, attempts to train GFlowNets using traditional divergence measures as learning objectives were unsuccessful. Instead, current approaches for training these models rely on minimizing the log-squared difference between a proposal (forward policy) and a target (backward policy) distribution. In this work, we first formally extend the relationship between GFlowNets and HVI to distributions on arbitrary measurable topological spaces. Then, we empirically show that the ineffectiveness of divergence-based learning of GFlowNets is due to the large gradient variance of the corresponding stochastic objectives. To address this issue, we devise a collection of provably variance-reducing control variates for gradient estimation based on the REINFORCE leave-one-out estimator. Our experimental results suggest that the resulting algorithms often accelerate training convergence when compared against previous approaches. All in all, our work contributes by narrowing the gap between GFlowNet training and HVI, paving the way for algorithmic advancements inspired by the divergence minimization viewpoint.
DePLM: Denoising Protein Language Models for Property Optimization 2 Ming Qin
Protein optimization is a fundamental biological task aimed at enhancing the performance of proteins by modifying their sequences. Computational methods primarily rely on evolutionary information (EI) encoded by protein language models (PLMs) to predict fitness landscape for optimization. However, these methods suffer from a few limitations.
S-MolSearch: 3D Semi-supervised Contrastive Learning for Bioactive Molecule Search
Virtual Screening is an essential technique in the early phases of drug discovery, aimed at identifying promising drug candidates from vast molecular libraries. Recently, ligand-based virtual screening has garnered significant attention due to its efficacy in conducting extensive database screenings without relying on specific protein-binding site information. Obtaining binding affinity data for complexes is highly expensive, resulting in a limited amount of available data that covers a relatively small chemical space. Moreover, these datasets contain a significant amount of inconsistent noise. It is challenging to identify an inductive bias that consistently maintains the integrity of molecular activity during data augmentation. To tackle these challenges, we propose S-MolSearch, the first framework to our knowledge, that leverages molecular 3D information and affinity information in semi-supervised contrastive learning for ligand-based virtual screening. Drawing on the principles of inverse optimal transport, S-MolSearch efficiently processes both labeled and unlabeled data, training molecular structural encoders while generating soft labels for the unlabeled data. This design allows S-MolSearch to adaptively utilize unlabeled data within the learning process. Empirically, S-MolSearch demonstrates superior performance on widely-used benchmarks LIT-PCBA and DUD-E.
Contrastive dimension reduction: when and how?
Dimension reduction (DR) is an important and widely studied technique in exploratory data analysis. However, traditional DR methods are not applicable to datasets with a contrastive structure, where data are split into a foreground group of interest (case or treatment group), and a background group (control group). This type of data, common in biomedical studies, necessitates contrastive dimension reduction (CDR) methods to effectively capture information unique to or enriched in the foreground group relative to the background group. Despite the development of various CDR methods, two critical questions remain underexplored: when should these methods be applied, and how can the information unique to the foreground group be quantified? In this work, we address these gaps by proposing a hypothesis test to determine the existence of contrastive information, and introducing a contrastive dimension estimator (CDE) to quantify the unique components in the foreground group. We provide theoretical support for our methods and validate their effectiveness through extensive simulated, semi-simulated, and real experiments involving images, gene expressions, protein expressions, and medical sensors, demonstrating their ability to identify the unique information in the foreground group.
Learning Deep Attribution Priors Based On Prior Knowledge
Feature attribution methods, which explain an individual prediction made by a model as a sum of attributions for each input feature, are an essential tool for understanding the behavior of complex deep learning models. However, ensuring that models produce meaningful explanations, rather than ones that rely on noise, is not straightforward. Exacerbating this problem is the fact that attribution methods do not provide insight as to why features are assigned their attribution values, leading to explanations that are difficult to interpret. In real-world problems we often have sets of additional information for each feature that are predictive of that feature's importance to the task at hand. Here, we propose the deep attribution prior (DAPr) framework to exploit such information to overcome the limitations of attribution methods. Our framework jointly learns a relationship between prior information and feature importance, as well as biases models to have explanations that rely on features predicted to be important. We find that our framework both results in networks that generalize better to out of sample data and admits new methods for interpreting model behavior.
Towards Stable Representations for Protein Interface Prediction Ziqi Gao 1,2
The knowledge of protein interactions is crucial but challenging for drug discovery applications. This work focuses on protein interface prediction, which aims to determine whether a pair of residues from different proteins interact. Existing data-driven methods have made significant progress in effectively learning protein structures. Nevertheless, they overlook the conformational changes (i.e., flexibility) within proteins upon binding, leading to poor generalization ability. In this paper, we regard the protein flexibility as an attack on the trained model and aim to defend against it for improved generalization. To fulfill this purpose, we propose ATProt, an adversarial training framework for protein representations to robustly defend against the attack of protein flexibility. ATProt can theoretically guarantee protein representation stability under complicated protein flexibility. Experiments on various benchmarks demonstrate that ATProt consistently improves the performance for protein interface prediction. Moreover, our method demonstrates broad applicability, performing the best even when provided with testing structures from structure prediction models like ESMFold and AlphaFold2.
Accelerating ERM for data-driven algorithm design using output-sensitive techniques Christopher Seiler
Data-driven algorithm design is a promising, learning-based approach for beyond worst-case analysis of algorithms with tunable parameters. An important open problem is the design of computationally efficient data-driven algorithms for combinatorial algorithm families with multiple parameters. As one fixes the problem instance and varies the parameters, the "dual" loss function typically has a piecewise-decomposable structure, i.e. is well-behaved except at certain sharp transition boundaries. Motivated by prior empirical work, we initiate the study of techniques to develop efficient ERM learning algorithms for data-driven algorithm design by enumerating the pieces of the sum dual loss functions for a collection of problem instances. The running time of our approach scales with the actual number of pieces that appear as opposed to worst case upper bounds on the number of pieces. Our approach involves two novel ingredients - an output-sensitive algorithm for enumerating polytopes induced by a set of hyperplanes using tools from computational geometry, and an execution graph which compactly represents all the states the algorithm could attain for all possible parameter values. We illustrate our techniques by giving algorithms for pricing problems, linkage-based clustering and dynamic-programming based sequence alignment.
Automatically Learning Hybrid Digital Twins of Dynamical Systems
Digital Twins (DTs) are computational models that simulate the states and temporal dynamics of real-world systems, playing a crucial role in prediction, understanding, and decision-making across diverse domains. However, existing approaches to DTs often struggle to generalize to unseen conditions in data-scarce settings, a crucial requirement for such models. To address these limitations, our work begins by establishing the essential desiderata for effective DTs. Hybrid Digital Twins (HDTwins) represent a promising approach to address these requirements, modeling systems using a composition of both mechanistic and neural components. This hybrid architecture simultaneously leverages (partial) domain knowledge and neural network expressiveness to enhance generalization, with its modular design facilitating improved evolvability. While existing hybrid models rely on expertspecified architectures with only parameters optimized on data, automatically specifying and optimizing HDTwins remains intractable due to the complex search space and the need for flexible integration of domain priors. To overcome this complexity, we propose an evolutionary algorithm (HDTwinGen) that employs Large Language Models (LLMs) to autonomously propose, evaluate, and optimize HDTwins.